Ethics in Information Technology, Fourth Edition

Chapter 3 Computer and Internet Crime

Objectives

- As you read this chapter, consider the following questions:
 - What key trade-offs and ethical issues are associated with the safeguarding of data and information systems?
 - Why has there been a dramatic increase in the number of computer-related security incidents in recent years?
 - What are the most common types of computer security attacks?

Objectives (cont'd.)

- Who are the primary perpetrators of computer crime, and what are their objectives?
- What are the key elements of a multilayer process for managing security vulnerabilities based on the concept of reasonable assurance?
- What actions must be taken in response to a security incident?
- What is computer forensics, and what role does it play in responding to a computer incident?

IT Security Incidents: A Major Concern

- Security of information technology is of utmost importance
 - Safeguard:
 - Confidential business data
 - Private customer and employee data
 - Protect against malicious acts of theft or disruption
 - Balance against other business needs and issues
- Number of IT-related security incidents is increasing around the world

Why Computer Incidents Are So Prevalent

- Increasing complexity increases vulnerability
 - Computing environment is enormously complex
 - Continues to increase in complexity
 - Number of entry points expands continuously
 - Cloud computing and virtualization software
- Higher computer user expectations
 - Computer help desks under intense pressure
 - Forget to verify users' IDs or check authorizations
- Computer users share login IDs and passwords

Why Computer Incidents Are So Prevalent (cont'd.)

- Expanding/changing systems equal new risks
 - Network era
 - Personal computers connect to networks with millions of other computers
 - All capable of sharing information
 - Information technology
 - Ubiquitous
 - Necessary tool for organizations to achieve goals
 - Increasingly difficult to match pace of technological change

Why Computer Incidents Are So Prevalent (cont'd.)

- Increased reliance on commercial software with known vulnerabilities
 - Exploit
 - Attack on information system
 - Takes advantage of system vulnerability
 - Due to poor system design or implementation
 - Patch
 - "Fix" to eliminate the problem
 - Users are responsible for obtaining and installing
 - Delays expose users to security breaches

Why Computer Incidents Are So Prevalent (cont'd.)

- Zero-day attack
 - Before a vulnerability is discovered or fixed
- U.S. companies rely on commercial software with known vulnerabilities

Types of Exploits

- Computers as well as smartphones can be target
- Types of attacks
 - Virus
 - Worm
 - Trojan horse
 - Distributed denial of service
 - Rootkit
 - Spam
 - Phishing (spear-phishing, smishing, and vishing)

Viruses

- Pieces of programming code
- Usually disguised as something else
- Cause unexpected and undesirable behavior
- Often attached to files
- Deliver a "payload"
- Spread by actions of the "infected" computer user
 - Infected e-mail document attachments
 - Downloads of infected programs
 - Visits to infected Web sites

Worms

- Harmful programs
 - Reside in active memory of a computer
 - Duplicate themselves
- Can propagate without human intervention
- Negative impact of worm attack
 - Lost data and programs
 - Lost productivity
 - Additional effort for IT workers

Trojan Horses

- Malicious code hidden inside seemingly harmless programs
- Users are tricked into installing them
- Delivered via email attachment, downloaded from a Web site, or contracted via a removable media device
- Logic bomb
 - Executes when triggered by certain event

Distributed Denial-of-Service (DDoS) Attacks

- Malicious hacker takes over computers on the Internet and causes them to flood a target site with demands for data and other small tasks
 - The computers that are taken over are called zombies
 - Botnet is a very large group of such computers
- Does not involve a break-in at the target computer
 - Target machine is busy responding to a stream of automated requests
 - Legitimate users cannot access target machine

Rootkits

- Set of programs that enables its user to gain administrator-level access to a computer without the end user's consent or knowledge
- Attacker can gain full control of the system and even obscure the presence of the rootkit
- Fundamental problem in detecting a rootkit is that the operating system currently running cannot be trusted to provide valid test results

Spam

- Abuse of email systems to send unsolicited email to large numbers of people
 - Low-cost commercial advertising for questionable products
 - Method of marketing also used by many legitimate organizations
- Controlling the Assault of Non-Solicited Pornography and Marketing (CAN-SPAM) Act
 - Legal to spam if basic requirements are met

Spam (cont'd.)

- Completely Automated Public Turing Test to Tell Computers and Humans Apart (CAPTCHA)
 - Software generates tests that humans can pass but computer programs cannot

Phishing

- Act of using email fraudulently to try to get the recipient to reveal personal data
- Legitimate-looking emails lead users to counterfeit Web sites
- Spear-phishing
 - Fraudulent emails to an organization's employees
- Smishing
 - Phishing via text messages
- Vishing
 - Phishing via voice mail messages

FIGURE 3-3 Example of phishing

Source Line: Course Technology/Cengage Learning.

Types of Perpetrators

- Perpetrators include:
 - Thrill seekers wanting a challenge
 - Common criminals looking for financial gain
 - Industrial spies trying to gain an advantage
 - Terrorists seeking to cause destruction
- Different objectives and access to varying resources
- Willing to take different levels of risk to accomplish an objective

Types of Perpetrators (cont'd.)

TABLE 3-4 Classifying perpetrators of computer crime

Type of perpetrator	Typical motives
Hacker	Test limits of system and/or gain publicity
Cracker	Cause problems, steal data, and corrupt systems
Malicious insider	Gain financially and/or disrupt company's information systems and business operations
Industrial spy	Capture trade secrets and gain competitive advantage
Cybercriminal	Gain financially
Hacktivist	Promote political ideology
Cyberterrorist	Destroy infrastructure components of financial institutions, utilities, and emergency response units

Source Line: Course Technology/Cengage Learning.

Hackers and Crackers

- Hackers
 - Test limitations of systems out of intellectual curiosity
 - Some smart and talented
 - · Others inept; termed "lamers" or "script kiddies"
- Crackers
 - Cracking is a form of hacking
 - Clearly criminal activity

Malicious Insiders

- Major security concern for companies
- Fraud within an organization is usually due to weaknesses in internal control procedures
- Collusion
 - Cooperation between an employee and an outsider
- Insiders are not necessarily employees
 - Can also be consultants and contractors
- Extremely difficult to detect or stop
 - Authorized to access the very systems they abuse
- Negligent insiders have potential to cause damage

Industrial Spies

- Use illegal means to obtain trade secrets from competitors
- Trade secrets are protected by the Economic Espionage Act of 1996
- Competitive intelligence
 - Uses legal techniques
 - Gathers information available to the public
- Industrial espionage
 - Uses illegal means
 - Obtains information not available to the public

Cybercriminals

- Hack into corporate computers to steal
- Engage in all forms of computer fraud
- Chargebacks are disputed transactions
- Loss of customer trust has more impact than fraud
- To reduce potential for online credit card fraud:
 - Use encryption technology
 - Verify the address submitted online against the issuing bank
 - Request a card verification value (CVV)
 - Use transaction-risk scoring software

Cybercriminals (cont'd.)

- Smart cards
 - Contain a memory chip
 - Updated with encrypted data each time card is used
 - Used widely in Europe
 - Not widely used in the U.S.

Hacktivists and Cyberterrorists

- Hacktivism
 - Hacking to achieve a political or social goal
- Cyberterrorist
 - Attacks computers or networks in an attempt to intimidate or coerce a government in order to advance certain political or social objectives
 - Seeks to cause harm rather than gather information
 - Uses techniques that destroy or disrupt services

Federal Laws for Prosecuting Computer Attacks

TABLE 3-5 Federal laws that address computer crime

Federal law	Subject area
USA Patriot Act	Defines cyberterrorism and penalties
Identity Theft and Assumption Deter- rence Act (U.S. Code Title 18, Section 1028)	Makes identity theft a Federal crime with penalties up to 15 years imprisonment and a maximum fine of \$250,000
Fraud and Related Activity in Connection with Access Devices Statute (U.S. Code Title 18, Section 1029)	False claims regarding unauthorized use of credit cards
Computer Fraud and Abuse Act (U.S. Code Title 18, Section 1030)	 Fraud and related activities in association with computers: Accessing a computer without authorization or exceeding authorized access Transmitting a program, code, or command that causes harm to a computer Trafficking of computer passwords Threatening to cause damage to a protected computer
Stored Wire and Electronic Communica- tions and Transactional Records Access Statutes (U.S. Code Title 18, Chapter 121)	Unlawful access to stored communications to obtain, alter, or prevent authorized access to a wire or electronic communication while it is in electronic storage

Source Line: Course Technology/Cengage Learning.

Implementing Trustworthy Computing

- Trustworthy computing
 - Delivers secure, private, and reliable computing
 - Based on sound business practices

FIGURE 3-4 Microsoft's four pillars of trustworthy computing Source Line: Course Technology/Cengage Learning.

Implementing Trustworthy Computing (cont'd.)

- Security of any system or network
 - Combination of technology, policy, and people
 - Requires a wide range of activities to be effective
- Systems must be monitored to detect possible intrusion
- Clear reaction plan addresses:
 - Notification, evidence protection, activity log maintenance, containment, eradication, and recovery

Risk Assessment

- Process of assessing security-related risks:
 - To an organization's computers and networks
 - From both internal and external threats
- Identifies investments that best protect from most likely and serious threats
- Focuses security efforts on areas of highest payoff

Risk Assessment (cont'd.)

- Eight-step risk assessment process
 - #1 Identify assets of most concern
 - #2 Identify loss events that could occur
 - #3 Assess likelihood of each potential threat
 - #4 Determine the impact of each threat
 - #5 Determine how each threat could be mitigated
 - #6 Assess feasibility of mitigation options
 - #7 Perform cost-benefit analysis
 - #8 Decide which countermeasures to implement

Risk Assessment (cont'd.)

TABLE 3-7 Risk assessment for hypothetical company

Risk	Business objective threatened	Estimated probability of such an event occurring	Estimated cost of a successful attack	Probability × cost = expected cost	Assessment of current level of protection	Relative priority to be fixed
Distributed denial-of- service attack	24/7 operation of a retail Web site	40%	\$500,000	\$200,000	Poor	1

(Continued)

Risk Assessment (cont'd.)

Risk	Business objective threatened	Estimated probability of such an event occurring	Estimated cost of a successful attack	Probability × cost = expected cost	Assessment of current level of protection	Relative priority to be fixed
Email attachment with harmful worm	Rapid and reliable communications among employees and suppliers	70%	\$200,000	\$140,000	Poor	2
Harmful virus	Employees' use of personal productivity software	90%	\$50,000	\$45,000	Good	3
Invoice and payment fraud	Reliable cash flow	10%	\$200,000	\$20,000	Excellent	4

Source Line: Course Technology/Cengage Learning.

Establishing a Security Policy

- A security policy defines:
 - Organization's security requirements
 - Controls and sanctions needed to meet the requirements
- Delineates responsibilities and expected behavior
- Outlines *what* needs to be done
 - Not how to do it
- Automated system policies should mirror written policies

Establishing a Security Policy (cont'd.)

- Trade-off between:
 - Ease of use
 - Increased security
- Areas of concern
 - Email attachments
 - Wireless devices
- VPN uses the Internet to relay communications but maintains privacy through security features
- Additional security includes encrypting originating and receiving network addresses

Educating Employees, Contractors, and Part-Time Workers

- Educate and motivate users to understand and follow policy
- Discuss recent security incidents
- Help protect information systems by:
 - Guarding passwords
 - Not allowing sharing of passwords
 - Applying strict access controls to protect data
 - Reporting all unusual activity
 - Protecting portable computing and data storage devices

Prevention

- Implement a layered security solution
 - Make computer break-ins harder
- Installing a corporate firewall
 - Limits network access
- Intrusion prevention systems
 - Block viruses, malformed packets, and other threats
- Installing antivirus software
 - Scans for sequence of bytes or virus signature
 - United States Computer Emergency Readiness
 Team (US-CERT) serves as clearinghouse

TABLE 3-8 Popular firewall software for personal computers

Software	Vendor
Zone Alarm Pro	CheckPoint Software Technologies Ltd.
F-Secure Internet Security	F-Secure Corporation
Panda Global Protection	Panda Security
NeT Firewall	NT Kernel Resources
ESET Smart Security 4	ESET

Source Line: "Best Firewall Software–Editor's Choice," All-Internet-Security.com, © January 2011, www.all-internet-security.com/top_10_firewall_software.html.

- Safeguards against attacks by malicious insiders
- Departing employees and contractors
 - Promptly delete computer accounts, login IDs, and passwords
- Carefully define employee roles and separate key responsibilities
- Create roles and user accounts to limit authority

- Defending against cyberterrorism
 - Department of Homeland Security and its National Cyber Security Division (NCSD) is a resource
 - Builds and maintains a national security cyberspace response system
 - Implements a cyber-risk management program for protection of critical infrastructure, including banking and finance, water, government operations, and emergency services

- Conduct periodic IT security audits
 - Evaluate policies and whether they are followed
 - Review access and levels of authority
 - Test system safeguards
 - Information Protection Assessment kit is available from the Computer Security Institute

Detection

- Detection systems
 - Catch intruders in the act
- Intrusion detection system
 - Monitors system/network resources and activities
 - Notifies the proper authority when it identifies:
 - Possible intrusions from outside the organization
 - Misuse from within the organization
 - Knowledge-based approach
 - Behavior-based approach

Response

- Response plan
 - Develop well in advance of any incident
 - Approved by:
 - Legal department
 - Senior management
- Primary goals
 - Regain control and limit damage
 - Not to monitor or catch an intruder
- Only 56% have response plan

Response (cont'd.)

- Incident notification defines:
 - Who to notify
 - Who not to notify
- Security experts recommend against releasing specific information about a security compromise in public forums
- Document all details of a security incident
 - All system events
 - Specific actions taken
 - All external conversations

Response (cont'd.)

- Act quickly to contain an attack
- Eradication effort
 - Collect and log all possible criminal evidence
 - Verify necessary backups are current and complete
 - Create new backups
- Follow-up
 - Determine how security was compromised
 - Prevent it from happening again

Response (cont'd.)

- Review
 - Determine exactly what happened
 - Evaluate how the organization responded
- Weigh carefully the amount of effort required to capture the perpetrator
- Consider the potential for negative publicity
- Legal precedent
 - Hold organizations accountable for their own IT security weaknesses

Computer Forensics

- Combines elements of law and computer science to identify, collect, examine, and preserve data and preserve its integrity so it is admissible as evidence
- Computer forensics investigation requires extensive training and certification and knowledge of laws that apply to gathering of criminal evidence

Summary

- Ethical decisions in determining which information systems and data most need protection
- Most common computer exploits
 - Viruses
 - Worms
 - Trojan horses
 - Distributed denial-of-service attacks
 - Rootkits
 - Spam
 - Phishing, spear-fishing, smishing, vishing

Summary (cont'd.)

- Perpetrators include:
 - Hackers
 - Crackers
 - Malicious insider
 - Industrial spies
 - Cybercriminals
 - Hacktivist
 - Cyberterrorists

Summary (cont'd.)

- Must implement multilayer process for managing security vulnerabilities, including:
 - Assessment of threats
 - Identifying actions to address vulnerabilities
 - User education
- IT must lead the effort to implement:
 - Security policies and procedures
 - Hardware and software to prevent security breaches
- Computer forensics is key to fighting computer crime in a court of law